Topological property of a t2g5 system with a honeycomb lattice structure
نویسندگان
چکیده
منابع مشابه
Inducing topological order in a honeycomb lattice
We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged int...
متن کاملTopological insulators in ternary compounds with a honeycomb lattice.
We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the Γ point...
متن کاملLattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملTopological insulator states in a honeycomb lattice of s-triazines.
Two-dimensional (2D) graphitic carbon nitride materials have been drawing increasing attentions in energy conversion, environment protection and spintronic devices. Here, based on first-principles calculations, we demonstrate that the already-synthesized honeycomb lattice of s-triazines with a chemical formula of C6N6 (g-C6N6) has topologically nontrivial electronic states characterized by px,y...
متن کاملTopological Aspects of Fermions on a Honeycomb Lattice
We formulate a model of relativistic fermions moving in two Euclidean dimensions based on a tight-binding model of graphene. The eigenvalue spectrum of the resulting Dirac operator is solved numerically in smooth U(1) gauge field backgrounds carrying an integer-valued topological charge Q, and it is demonstrated that the resulting number of zero-eigenvalue modes is in accord with the Atiyah-Sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.99.155135